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Abstract
France is the first pesticide-consuming country in Europe. Glyphosate is the most used pesticide worldwide and glyphosate 
is detected in the general population of industrialized countries, with higher levels found in farmers and children. Little 
data was available concerning exposure in France. Our objective was to determine glyphosate levels in the French general 
population and to search for an association with seasons, biological features, lifestyle status, dietary habits, and occupational 
exposure. This study includes 6848 participants recruited between 2018 and 2020. Associated data include age, gender, 
location, employment status, and dietary information. Glyphosate was quantified by a single laboratory in first-void urine 
samples using ELISA. Our results support a general contamination of the French population, with glyphosate quantifiable 
in 99.8% of urine samples with a mean of 1.19 ng/ml + / − 0.84 after adjustment to body mass index (BMI). We confirm 
higher glyphosate levels in men and children. Our results support glyphosate contamination through food and water intake, 
as lower glyphosate levels are associated with dominant organic food intake and filtered water. Higher occupational exposure 
is confirmed in farmers and farmers working in wine-growing environment. Thus, our present results show a general con-
tamination of the French population with glyphosate, and further contribute to the description of a widespread contamination 
in industrialized countries.
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Introduction

Following World War II, the French agricultural model 
evolved through mechanization, crop improvement, and 
increased use of chemicals (plant protection products and 
fertilizers). Agriculture became more professional and spe-
cialized. In the last 40 years, the number of French farmers 
decreased from 1.61 million in 1982 to 0.4 million in 2019. 
Accordingly, 1.1 million farms were recorded in 1988 vs. 
0.45 million in 2013. Nowadays, 29 million hectares (ha) are 
dedicated to agriculture (54% of the French surface area), 
with an average of 61 ha per farm. Farm sizes vary greatly 
according to crop production: 87 ha per farm for cereal pro-
duction down to 10 ha for horticulture or market gardening 
(Agreste 2020b, d, e, INSEE 2020).

The use of pesticides resulted in the discharge of resi-
dues into the environment, ecosystem, and food chain 
(Hussain et al. 2015, Schulz et al. 2021). Despite the recent 
marked progression of organic production (Agreste 2020c), 
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the purchase and use of pesticides in French agriculture 
increased by 25% during the last decade (Mandard 2020). 
France is among the world’s top ten pesticide-using coun-
tries (WorldAtlas 2021). In 2017, chemical weed control 
increased in almost all large-scale crops areas; data from the 
French Ministry of Agriculture indicate that the number of 
chemical sprays (herbicides, fungicides, pesticides) per crop 
range between 33 and 2.7, in decreasing order for fruit, wine, 
vegetable, and cereal farming (Agreste 2020a, e).

Glyphosate, put on the market in 1974 under the trade 
name “Roundup,” is the world’s most widely used broad-
spectrum herbicide and crop desiccant, usually sprayed 
on weeds or some crops before harvest (Woodburn 2000). 
Glyphosate, or N-(phosphonomethyl) glycine, an organo-
phosporus compound (phosphonate) (Franz 1974), blocks 
a metabolic pathway essential for the plant’s growth (Stein-
rucken and Amrhein 1980).

The glyphosate Maximum Residue Limit (MRL) in 
France for drinking water is 0.1 ng/ml. In solid food, MRL 
is higher and reaches 20 mg/Kg for cereals, like oats (20 mg/
Kg), barley (20 mg/Kg), wheat (10 mg/Kg) or lentils (10 mg/
Kg), beans (2 mg/Kg), peas (10 mg/Kg), and canola seeds 
(10 mg/Kg) (ANSES 2016, 2019). In France, glyphosate was 
found in 53% of food samples, including 87.5% of breakfast 
cereals; concentrations ranged from 40 μg/Kg for a break-
fast cereal to 2100 μg/Kg for a sample of dry lentils (Géné-
rationsFutures 2017). Another study conducted in France 
showed that glyphosate was found in 100% of infant cereal 
samples (ANSES 2016). In 2007, 9.5% of cereal samples 
tested in Europe by the European Food Safety Author-
ity (EFSA) contained glyphosate. A study carried out in 
Switzerland on foods purchased in supermarkets found the 
highest levels of glyphosate in cereals and in pasta (Zoller 
et al. 2018). Glyphosate was also detected in beverages; in 
Germany, 6 out of 14 beers tested positive for glyphosate. 
All wines and fruit juices tested in Switzerland contained 
glyphosate (Zoller et al. 2018).

Human exposure to glyphosate, either by food and water 
intake or via external exposure, has been extensively studied. 
However, because of differences in methodology between 
studies, direct data comparison is difficult (Connolly et al. 
2020a).

In the general population, the main route of exposure 
appears to be food, with higher levels of exposure in devel-
oping countries (Acquavella et al. 2004). Glyphosate was 
found in urine in the majority of studies (Gillezeau et al. 
2019; Connolly et al. 2020a). Glyphosate was found in the 
urine of nearly half of the non-user volunteers from 18 Euro-
pean countries (IARC 2015). A literature review (Connolly 
et al. 2020a) reported that around 70% of urine samples 
were positive for glyphosate in the general population, with 
arithmetic mean concentrations varying between 0.28 ng/ml 
(McGuire et al. 2016) and 7.6 ng/ml (Varona et al. 2009). 

In Europe, a retrospective analysis of urine samples from 
Germany collected between 2001 and 2015 analyzed by 
GC–MS/MS (Gas Chromatography-Mass Spectrometry) 
reported glyphosate concentrations at or above the limit of 
quantification of 0.1 ng/ml in 31.8% samples, with a peak 
in 2012 (57.5%) and 2013 (56.4%) with median concen-
tration slightly above the limit of quantification (LOQ) 
(Conrad et al. 2017). Connolly et al., validating a GC–MS 
protocol with a LOQ of 0.05 ng/ml, detected glyphosate in 
66% of German urine samples (Connolly et al. 2020b). In a 
recent study conducted on Portuguese adults who mainly ate 
organic food, glyphosate measured in urine by GC–MS/MS 
was detected in 28% of samples (median value of 0.25 ng/
ml) collected in July and detected in 73% of samples col-
lected in October and analyzed by HPLC–MS/MS (high-
performance liquid chromatography-mass spectrometry) 
(median value of 0.13 ng/ml) (Nova et al. 2020).

Men tend to have a higher mean urine concentration of 
glyphosate than women, and children a higher mean concen-
tration than adults (Curwin et al. 2007; Conrad et al. 2017).

Recent European studies analyzed glyphosate levels in 
children; a study from Denmark showed that children pre-
sented higher glyphosate levels than their mother (Knud-
sen et al. 2017). This was confirmed by a German study 
reviewed in (Gillezeau et al. 2019); Lemke et al. (Lemke 
et al. 2021) showed that 52% of 2,144 first-void urine sam-
ples from German children and adolescents aged 3–17 years 
old had glyphosate level above the LOQ (0.1 ng/ml) with a 
geometric mean concentration of 0.107 ng/ml. Ferreira et al. 
(Ferreira et al. 2021) also detected glyphosate in 95.1% of 
41 urine samples from Portuguese children (2–13 years old), 
with an arithmetic mean of 1.77 ng/ml and reaching a maxi-
mum value of 4.35 ng/ml. These authors reported values 
from previous studies conducted in children, with detection 
rates ranging from 11.1 to 100%, arithmetic mean values 
from 0.1 to 2.7 ng/ml, and maximum values from < 0.1 to 
18 ng/ml (reviewed in (Ferreira et al. 2021)).

Pregnant women are also exposed to glyphosate (Parvez 
et al. 2018). In France, 43% of pregnant women had glypho-
sate in their urine (average 0.2 ng/ml and maximum 0.76 ng/
ml) (Chevrier et al. 2009). An American multicenter sur-
vey observed glyphosate in 95% (LOD 0.014 ng/ml) of 2nd 
trimester maternal urine samples by UPLC-MS/MS (Ultra 
Performance Liquid Chromatography) with a median of 
0.22 ng/ml (0.01 to 1.9 ng/ml) (Lesseur et al. 2021). In addi-
tion, Ruiz et al. (Ruiz et al. 2021) detected glyphosate in 
urine from 54% of Spanish breastfeeding mothers (n = 97) 
with a geometric mean of 0.12 ng/ml.

Occupational exposure occurs via the skin and via respira-
tory and digestive tracts, and is also valid for people living 
near agricultural holdings. Farmers and their families pre-
sented higher glyphosate levels than the general population; 
with glyphosate arithmetic mean levels reported in urine after 
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work between 1.35 ng/ml in Europe (Connolly et al. 2017) 
and 292 ng/ml in China (Zhang et al. 2020). Glyphosate levels 
are also reported to be higher in farmers’ children (Jauhiainen 
et al. 1991; Curwin et al. 2007).

Important human health concerns have been raised regard-
ing glyphosate exposure. The International Agency for 
Research on Cancer (IARC), a specialized agency of the World 
Health Organization (WHO), linked non-Hodgkin lymphoma 
(NHL) to glyphosate exposure and classified glyphosate as a 
“probable carcinogenic (Group 2 A)” (IARC 2015); this asso-
ciation has been further confirmed (Leon et al. 2019; Zhang 
et al. 2019; Inserm 2021), whereas the evaluation conducted 
by the European Food Safety Authority (EFSA) concluded 
that glyphosate is “unlikely to pose a carcinogenic hazard to 
humans and the evidence does not support classification with 
regard to its carcinogenic potential” (EFSA 2015). Evaluation 
by the EFSA mostly relied on studies conducted by agrochemi-
cal industries (Portier et al. 2016; Benbrook 2019; Foucart 
2021a, b).

Some studies associated glyphosate herbicides to neuro-
toxic effects and impaired neurodevelopment (Nevison 2014; 
de Araujo et al. 2016; von Ehrenstein et al. 2019; Ongono 
et al. 2020); nephrotoxic mechanisms (Jayasumana et al. 2014; 
Gunarathna et al. 2018; Gunatilake et al. 2019); and endocrine 
disrupting effects, especially concerning sexual hormones 
(Savitz et al. 1997; Garry et al. 2002; Dallegrave et al. 2007; 
Alarcon et al. 2019; Manservisi et al. 2019; Ingaramo et al. 
2020; Jarrell et al. 2020).

Due to the use of glyphosate in French agriculture, with 
available data indicating that glyphosate is frequently present 
in the food supply, we hypothesized that a large percentage of 
the French population would be contaminated by glyphosate.

Our aim in the present study was to evaluate the fre-
quency and levels of glyphosate contamination in the French 
population, nationwide. We also aimed to determine a poten-
tial association of urine glyphosate levels with the seasons, 
subject characteristics, lifestyle status, dietary habits, or 
occupational exposure.

Based on the observation that measuring the concentra-
tion of glyphosate on a single urinary spot after an overnight 
fast is a reliable estimate of maximum glyphosate excretion 
in humans (Faniband et al. 2021), glyphosate was quantified 
in first-void urine samples from 6848 volunteer participants 
recruited throughout metropolitan France and in La Reunion 
Island (Indian Ocean).

Material and methods

Participants, sample, and data collection

The study was designed by the Campagne Glyphosate 
France Association (Foix, France). Participant recruitment 

was organized and conducted by French local committees 
between June 2018 and January 2020. One hundred and 
seventy-five sessions were organized in 63 French districts.

All subjects gave written informed consent to participate 
in the study prior to sample collection. No exclusion criteria 
were used to exclude potential participants.

A total of 6848 participants were recruited. Participants 
were asked not to urinate, drink, eat, or smoke at least 6 h 
before urine collection.

Prior to urine collection, a written questionnaire was filled 
in by each participant providing self-reported socio-demo-
graphic and lifestyle information. Collected data included 
age, gender, height and weight, employment status, place of 
residence, smoking status, physical activity practice, general 
dietary information (organic food consumption; beer and 
fruit juice consumption; tap, bottled, spring (well or natural 
source) or filtered water consumption). The questionnaire 
also included whether the participant had complied with the 
protocol before urine collection.

All samples were processed according a unique stand-
ardized protocol: anonymized first-void urine samples were 
collected in polypropylene centrifuge tubes (Nerbe Plus, 
Germany; #02–502-3001), incubated 10 min at 70 °C for 
stabilization and shipped at room temperature (RT) to Bio-
check GmbH (Germany) for further analysis.

Urine glyphosate quantification

Urine samples were analyzed for glyphosate residue levels 
using the glyphosate Enzyme-linked immunosorbent assays 
(ELISA) kit (Abraxis, Inc., USA; #500,086). The glyphosate 
ELISA kit quantification range in water on a direct sample 
is 0.075–4 ng/ml. Quantitative analytical method validation 
for water samples, performed by the Ontario Ministry of 
the Environment, showed that the correlation coefficient 
between LC–MS and ELISA was 0.804 (Abraxis Eurofin 
(Parmar)) and 0.88 according to another validation study 
(Byer et al. 2008). Quantification of glyphosate by ELISA 
in water samples evaluated according to HPLC showed a 
correlation of 0.99 (Clegg et al. 1999); similar performance 
of both methods were further confirmed (Rubio et al. 2003).

Urine samples were analyzed according to the manufac-
turer’s protocol, as validated by Krüger et al. (Krüger et al. 
2014) based on ELISA and GC–MS assay data comparison 
on human urine samples.

All assays were performed by a single laboratory Bio-
check GmbH. ELISA was performed according to the 
manufacturer’s protocol intended for human urine samples. 
Briefly, 500 µl of urine sample were filtered with a 3 K VWR 
Centrifugal filter at 3000 × g for 10 min and the upper layer 
was transferred to a new tube and analyzed according to 
the Glyphosate Plate ELISA Kit user’s guide. Samples with 
glyphosate concentrations higher than 4 ng/ml were diluted 
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at a 1:5 ratio with the Glyphosate Sample Diluent provided 
in the kit and reanalyzed. Measurements were performed on 
a Sunrise Microplate Reader automate (Tecan, Switzerland). 
Standard deviation measured by intra-day and inter-day sam-
ples reported by Biocheck GmbH is 0.13 ng/ml.

Statistical analyses and data interpretation

The participant data used in this study have been anonymized in 
the database. Glyphosate measurements and self-reported par-
ticipant data on socio-demographic and lifestyle characteristics 
are reported as numbers, percentages or mean with range or 
standard deviation (SD). Geographical data are plotted on a map.

Glyphosate measurements were adjusted according body 
mass index (BMI, calculated as weight/height2) as proposed 
in (Boeniger et al. 1993). Differences in glyphosate concen-
trations according to each variable (age, gender, employment 
status, place of residence, smoking status, physical activ-
ity, dietary information) were assessed using ANOVA or 
Kruskal–Wallis tests.

All analyses were performed using R Environment for 
statistical computing (RCoreTeam 2020). The statistical sig-
nificance level was set to α = 0.05.

Results

Population characteristics

Among the 6848 urine samples collected, 53 (0.8%) could 
not be used and were excluded from further analysis; the 

cohort therefore included 6795 urine samples. Date and 
location of collection were available for all samples. Geo-
graphical location of participants’ place of residence is 
mapped in Fig. 1.

Five thousand eight hundred (5800) questionnaires filled 
in by these participants providing self-reported information 
were analyzed and further included in association analyses.

Participant characteristics are given in Table 1; 82% of partic-
ipants self-reported compliance to the protocol, the median age 
was 53 years [0.5–94], and M/F sex ratio was 0.85. BMI, cal-
culated according to height and weight, is presented in Table 1 
according the WHO classification. Concerning lifestyle status, 
11.0% of study participants self-reported no physical activity 
and 13.4% self-reported tobacco use. Concerning dietary habits, 
over half of the participants self-reported that their usual diet 
included at least 60% of organic food. Tap, bottled, spring (well 
or natural source) and filtered water, beer and fruit juice con-
sumption were also reported in the questionnaire. Occupational 
status and working environment were also reported: notably, 
6.3% of the participants were farmers and 28.6% were retired 
from the general population. A higher proportion of participants 
reported working in a countryside environment than in an urban 
environment; of note, 7.5% of the participants worked in a wine-
growing environment.

Glyphosate is detected in 99.8% of the samples 
and is higher during spring and summer

Glyphosate was quantitatively detected in 6781 urine sam-
ples out of 6795 (99.8%). In association analysis, measure-
ments below the LOQ (0.075 ng/ml) were considered to be 

Fig. 1  Geographical location 
of participants’ residence. Plot 
sizes are proportional to the 
number of participants



Environmental Science and Pollution Research 

1 3

equal to 0.0 ng/ml. BMI-adjusted glyphosate mean level was 
1.19 ng/ml + / − 0.84, with a range [< 0.075; 7.36].

Data from the 5800 questionnaires were used to evalu-
ate glyphosate levels according to the season of collec-
tion. Urine samples collected between May and September 
showed significantly higher glyphosate levels than those 
collected between October and April (Table 2; p < 0.001).

Some urine collection sessions were repeated in the same 
geographical district: 1796 samples collected at least at 4 
different times of the year in the same geographical dis-
trict were available. Glyphosate measurements confirmed a 
higher level in spring–summer than in fall-winter (Table 2; 
p < 0.001).

Glyphosate level is higher in first‑void urine

Participants who reported to have urinated less than 6 h 
before urine collection (N = 983) displayed lower glypho-
sate level than participants who complied with the protocol 
(N = 4583) (0.95 ng/ml + / − 0.67 vs. 1.24 ng/ml + / − 0.83; 
p < 0.001).

Glyphosate level is higher in men and in younger 
participants and decreases with age

Male participants (N = 2583) had higher mean glyphosate 
levels than women (N = 3040) (1.27 ng/ml + / − 0.84 vs. 
1.13 ng/ml + / − 0.83; p < 0.001). Glyphosate levels were 
also higher in the youngest participants, with a continuous 
decrease with age (Table 3, p < 0.001).

Glyphosate level is associated with smoking 
and dietary habits

Smoking is associated with higher glyphosate levels

Glyphosate level was higher in tobacco users (N = 717) than 
in non-smokers or former smokers (N = 4930) (1.43 ng/
ml + / − 0.91 vs. 1.16 ng/ml + / − 0.82; p < 0.001).

Table 1  Participants’ self-reported biological, socio-demographic, 
and lifestyle information (N = 5800)

Characteristics Study participants

Protocol compliance (%) 82.3
Age (years) 53 [0.5–94]
Gender (M/F ratio) 0.85
BMI, kg/m2 (%)
  Underweight, ≤ 18.5 7.0
  Normal range, 18.5–24.9 67.4
  Overweight, 25.0–29.9 20.7
  Class I obesity, 30.0–34.9 3.8
  Class II obesity, 35.0–39.9 0.8
  Class III obesity, ≥ 40.0 0.2

Physical activity (%)
  Never 11.0
  Occasionally 27.6
  Regular basis 61.4
  Smokers (%) 13.4

Proportion of organic food consumption (%)
  < 40% 17.3
  40–60% 24.2

  > 60% 58.4
Tap water consumption (%)
  Never or rarely 21.7
  Occasionally 8.8
  Every day or almost 69.5

Spring water consumption (%)
  Never or rarely 80.6
  Occasionally 10.1
  Every day or almost 9.2

Filtered water consumption (%)
  Never or rarely 73.0
  Occasionally 4.3
  Every day or almost 22.7

Beer consumption (%)
  Never or rarely 42.4
  Occasionally 49.9
  Every day or almost 7.7

Fruit juice consumption (%)
  Never or rarely 40.1
  Occasionally 44.4
  Every day or almost 15.5

Employment status (%)
  Retired 28.6
  Farmers 6.3
  Unemployed 5.8
  Children 4.2
  Other activity 55.1

Working environment* (%)
  Urban area 56.7
  Countryside (excluding vineyards) 59.2
  Vineyards 7.5

*Several answers could be given.

Table 2  BMI-adjusted glyphosate levels (ng/ml) according to seasons 
in all samples from France, and in samples collected in the same dis-
trict at various seasons

Spring–summer Fall-winter

All samples (N = 5647) 1.40 + / − 0.93 1.05 + / − 0.74
Samples from same district 

(N = 1796)
1.43 + / − 0.88 1.05 + / − 0.75
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Major organic food consumption is associated with lower 
glyphosate level

No statistically significant difference was observed between 
participants who consume organic food (any percentage) 
( N = 5271) and those who do not consume any organic 
food (N = 216) (Table 4; 1.19 ng/ml + / − 0.84 vs. 1.17 ng/
ml + / − 0.80; p = 0.68). However, participants who reported 
eating more than 85% of organic food (N = 1327) displayed 
lower glyphosate level than other participants (N = 3875) 
(1.16 ng/ml + / − 0.80 vs. 1.21 ng/ml + / − 0.85; p = 0.026).

Beer and fruit juice consumption are associated with higher 
glyphosate level

Participants who drank beer had significantly higher glypho-
sate concentrations than other participants over 15 years 
old (Table 5; p < 0.001). Participants who drank fruit juice 
displayed higher glyphosate levels than non-consumers 
(Table 6; p = 0.009).

Tap and spring water consumption are associated 
with higher glyphosate levels whereas filtered 
water consumption is associated with lower 
glyphosate levels

Participants who drank tap water or spring water presented 
higher glyphosate levels (Table 7; p = 0.011 and Table 8; 
p = 0.025). Filtered water consumption was associated with 
lower glyphosate levels (Table 9; p < 0.001). Bottled water 

consumption was not associated with a change in glypho-
sate mean level (p = 0.83, data not shown). Most participants 
ticked several types of filter (including carbon filter, other 
filter, reverse osmosis, softener); thus, no association with a 
specific filter could be identified.

Glyphosate level is associated to occupational 
exposure

Glyphosate levels were analyzed according to employment 
status. Farmers (N = 342) had significantly higher glypho-
sate concentrations than other participants over 15 years old 
(N = 4883) (1.29 ng/ml + / − 0.84 vs. 1.15 ng/ml + / − 0.79; 
p = 0.002).

When the specific work environment was considered, 
farmers working in a wine-growing environment (N = 63) 
presented higher glyphosate levels than other farmers 

Table 3  BMI-adjusted glyphosate level (ng/ml) according to partici-
pants’ age

Age (years) Glyphosate level (ng/ml)

 < 16 (N = 217) 2.05 + / − 1.29
16–39 (N = 1192) 1.44 + / − 0.92
40–49 (N = 1019) 1.26 + / − 0.83
50–59 (N = 1183) 1.11 + / − 0.73
60–69 (N = 1521) 0.99 + / − 0.67
70–79 (N = 468) 0.93 + / − 0.70
 > 79 (N = 37) 0.67 + / − 0.58

Table 4  BMI-adjusted glyphosate level (ng/ml) according to partici-
pants’ organic food consumption

Organic food consumption Glyphosate level (ng/ml)

No (N = 216) 1.17 + / − 0.80
Yes (N = 5271) 1.19 + / − 0.84
Yes, less than 85% (N = 3875) 1.21 + / − 0.85
Yes, more than 85% (N = 1327) 1.16 + / − 0.80

Table 5  BMI-adjusted glyphosate level (ng/ml) according to partici-
pants’ beer consumption

Beer consumption Glyphosate level (ng/ml)

Never (N = 2153) 1.17 + / 0.87
Occasionally (N = 2542) 1.20 + / − 0.81
Regular basis (N = 378) 1.37 + / − 0.80

Table 6  BMI-adjusted glyphosate level (ng/ml) according to partici-
pants’ fruit juice consumption

Fruit juice consumption Glyphosate level (ng/ml)

Never (N = 2151) 1.16 + / − 0.81
Occasionally (N = 2372) 1.21 + / − 0.86
Regular basis (N = 829) 1.25 + / − 0.85

Table 7  BMI-adjusted glyphosate level (ng/ml) according to partici-
pants’ tap water consumption

Tap water consumption Glyphosate level (ng/ml)

Never (N = 1208) 1.13 + / − 0.82
Occasionally (N = 492) 1.23 + / − 0.87
Regular basis (N = 3874) 1.20 + / − 0.83

Table 8  BMI-adjusted glyphosate level (ng/ml) according to partici-
pants’ spring water consumption

Spring water consumption Glyphosate level (ng/ml)

Never (N = 4494) 1.18 + / − 0.83
Occasionally (N = 565) 1.27 + / − 0.87
Regular basis (N = 514) 1.23 + / − 0.90
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(N = 279) (1.56 ng/ml + / − 0.98 vs. 1.22 ng/ml + / − 0.79; 
p = 0.004).

Discussion

France is an important agricultural country, with half of its 
surface area dedicated to farming. During the last decades, 
the dominant French agricultural model evolved towards 
more intensive agriculture with an increased use of chemi-
cals; France is among the top ten pesticide-consuming coun-
tries worldwide and is number one in the EU (Sharma et al. 
2019).

Glyphosate has been extensively used since its commer-
cialization in the 1970s in countries with intensive farming 
(reviewed in (Sharma et al. 2019)). Several methods have 
been developed and validated to measure glyphosate levels 
(reviewed in (Valle et al. 2019)). However, comparison of 
datasets needs to be carried out with caution, because of 
differences in sampling strategy, urinary dilution adjust-
ments, or detection/quantification methods and limits (Con-
nolly et al. 2020a). Accordingly, epidemiological studies 
on glyphosate have reported variable results. In Europe, the 
mean range of glyphosate levels was 0.16 to 7.6 ng/ml with 
detection frequencies in EU-states ranging between 10 and 
90% (Conrad et al. 2017; Gillezeau et al. 2019; Connolly 
et al. 2020a; Nova et al. 2020). Little data is available con-
cerning glyphosate levels in the French general population. 
A study conducted in an adult cohort on several pesticides 
(classified as organophosphorus, pyrethroid and azole com-
pounds) showed lower exposure, based on urine sample lev-
els, in frequent organic food consumers (Baudry et al. 2019).

The present study included 6848 participants recruited 
between June 2018 and January 2020. The whole of France 
was covered except the north-east area, and to a lesser extent, 
a corridor from the north east to the south west. Glyphosate 
was quantified in urine samples using ELISA assay by a 
single laboratory (N = 6795). Measuring glyphosate con-
centration on a single urinary spot early morning after an 
overnight fast has been assessed to be a reliable estimation 
of maximum glyphosate excretion in humans. Two experi-
mental studies carried out on humans showed that urinary 
elimination of glyphosate followed a two-phase excretion, 

with an initial rapid phase between 6 and 9 h followed by a 
slower phase (Zoller et al. 2020; Faniband et al. 2021).

The ELISA method applied to glyphosate detection and 
quantification offers an alternative approach to the draw-
backs of chromatographic techniques, such as the require-
ment of derivatization procedures, sample pre-treatments, 
costly equipment, and the speed of reactions and analysis. 
ELISA and HPLC methods show comparable performances 
in terms of accuracy and precision for the detection and 
quantification of glyphosate in water samples (Clegg et al. 
1999; Rubio et al. 2003), as do ELISA and LC/MS methods 
in water (Byer et al. 2008). Although there is a strong cor-
relation between ELISA and HPLC methods, Clegg et al. 
(Clegg et al. 1999) showed that glyphosate values deter-
mined by ELISA were greater than those obtained by the 
HPLC method. These results were confirmed in ELISA vali-
dation tests performed on 14 human urine samples; GC–MS 
and ELISA methods showed a correlation coefficient of 0.87 
and mean values obtained with ELISA were higher (Krüger 
et al. 2014). Higher values of pesticides quantified by ELISA 
than by HPLC were also observed for atrazine mercapturate 
and chlorpyrifos (Curwin et al. 2010).

Thus, these methodological differences should be kept 
in mind concerning our results supporting a general con-
tamination of the French population, with glyphosate quan-
tifiable in 99.8% of urine samples and a mean of 1.19 ng/
ml + / − 0.84.

Nevertheless, the biological, dietary habits and socio-
demographic data association analyses performed here on a 
nationwide cohort, confirmed previously published data on 
glyphosate contamination.

Several studies performed with ELISA or LC methods 
found comparable results to ours in the general population 
in the USA, Denmark, or Sri Lanka (Curwin et al. 2007; 
Jayasumana et al. 2014; McGuire et al. 2016; Knudsen et al. 
2017; Parvez et al. 2018; Lesseur et al. 2021), whereas other 
studies performed with GC or LC methods reported lower 
values in the USA, Germany, Portugal, or Spain (Mills et al. 
2017; Connolly et al. 2018; Connolly et al. 2020a, b; Nova 
et al. 2020; Ruiz et al. 2021).

Compliance to the protocol (first-void urine collection) 
was associated with significantly higher glyphosate levels. 
These results support that delayed glyphosate excretion 
leads to higher urine concentrations. Some studies adjusted 
their results by a measurement of urinary dilution, mostly 
using creatinine. Experimental glyphosate intake followed 
by continuous assay monitoring recommended to adjust the 
urine dilution to obtain a better correlation (Zoller et al. 
2020; Faniband et al. 2021); unadjusted and adjusted uri-
nary excretion curves presented by Faniband et al. were very 
similar especially during the first 9 h (Faniband et al. 2021). 
However, creatinine is described to be affected by several 
factors as diet, age, sex, health status, including diabetes 

Table 9  BMI-adjusted glyphosate level (ng/ml) according to partici-
pants’ filtered water consumption

Filtered water consumption Glyphosate level (ng/ml)

Never (N = 4061) 1.21 + / − 0.84
Occasionally (N = 243) 1.31 + / − 0.94
Regular basis (N = 1268) 1.12 + / − 0.80
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or kidney disorders. Other studies suggested to determine 
urine concentration by its specific gravity. All the tests used 
to measure urine specific gravity have certain limitations 
based on their underlying physical principles (Chadha et al. 
2001). Since creatinine and specific gravity have drawbacks 
and an additional cost, concentration was adjusted according 
to BMI (Boeniger et al. 1993).

Our results seem to show a greater glyphosate intake in 
spring time. A former study showed that pesticides were 
more detected in groundwater during spring (McManus 
et al. 2014). Moreover, a Canadian study showed a bimodal 
glyphosate temporal distribution with peak concentrations 
occurring in late spring/early summer and fall (Byer et al. 
2008). However, as no urine volume adjustment was per-
formed and because people may excrete smaller volumes 
of urine during spring–summer than in winter, this result 
requires further investigation for confirmation.

Analysis of questionnaires revealed specificities of this 
participant cohort compared to the general population: older 
median age, more women, more physical activity, and less 
smokers (Galey et al. 2020, Pasquereau et al. 2020). Partici-
pants also displayed specific dietary habits with a greater 
organic food consumption (AgenceBio 2021). A high pro-
portion of participants were farmers, including workers in a 
wine-growing environment (Cnav 2021). Recruitment was 
based on voluntary participation, which would explain such 
cohort specificities of citizens sensitized to pesticide issues 
and to living a healthy lifestyle.

Our results revealed an association between glyphosate 
levels and participant characteristics, as men presented 
higher glyphosate levels. Higher levels in men were previ-
ously reported (Conrad et al. 2017). Importantly, glyphosate 
also showed an inverse correlation with age, with the highest 
values in participants aged under 15, as previously reported 
(Curwin et al. 2007; Fagan et al. 2020). Higher glyphosate 
levels found in the youngest participants may be associated 
with dietary habits (especially infant cereal), physiology and 
metabolism (children breathe and drink twice more than 
adults), physical activities, behavior and hygiene patterns 
with higher soil ingestion (Moya et al. 2004; Ginsberg et al. 
2016). The results presented here are comparable with those 
reported in Portugal (Ferreira et al. 2021) and in Denmark 
(Knudsen et al. 2017), both carried out by ELISA method 
and are higher than those reported in Germany (Lemke et al. 
2021) or in the USA (Trasande et al. 2020).

Results according to dietary habits highlighted con-
tamination by food intake as lower glyphosate levels were 
associated both with dominant consumption of organic food 
and of filtered water. No association with a specific filter 
could have be identified as most participants reported using 
several kinds of filter (including carbon filter, other filter, 
reverse osmosis, softener). Organic food consumption was 
previously shown to be associated with lower glyphosate 

levels (Fagan et al. 2020) or with lower levels of pesticides 
(Baudry et al. 2019). Both tap water and spring water con-
sumption were associated with higher glyphosate values as 
compared to filtered water. Water contamination is common 
and likely as glyphosate is polar and water soluble. Monitor-
ing pesticide residues in EU agricultural topsoil collected 
between 2015 and 2018 showed a maximum of 16 residues/
sample with glyphosate being the most frequently detected 
and in highest contents (Geissen et al. 2021).

We also observed that higher glyphosate urine levels are 
associated with high beer and fruit juice consumption in 
concordance with studies showing noticeable glyphosate 
levels in beers and fruit juices (Zoller et al. 2018) and with 
reports showing that the number of chemical sprays per crop 
is the highest for fruit (Agreste 2020a, e).

Higher occupational exposure to pesticides was con-
firmed as farmers and more particularly farmers working 
in a wine-growing environment displayed higher glypho-
sate levels (respectively 1.29 ng/ml and 1.56 ng/ml). These 
results are supported by previously published data showing 
high levels in occupationally exposed groups, with mean val-
ues ranging from 1.35 to 3.2 ng/ml (Connolly et al. 2020a; 
Zhang et al. 2020). Two different studies performed with LC 
methods (Connolly et al. 2017, 2018) reported results that 
were comparable and lower than ours. The higher exposure 
levels found in farmers working in wine-growing may be due 
to a more intensive use of pesticides in vineyards (Agreste 
2020a, e); in France in 2006, wine-growing represented 
3.3% of agricultural land, whereas their pesticide consump-
tion in euros was 14.4% (Butault et al. 2011). Furthermore, 
the use of plant protection products increased by 21% in 
wine-growing between 2010 and 2016 (Agreste 2019).

Thus, our present results on more than 6000 participants 
in various parts of the country firmly support a general con-
tamination of the French population with glyphosate, with 
a significant seasonal effect backing contamination from 
external exposure. Our data confirm previous studies sup-
porting higher levels in the young, in men and in occupa-
tionally exposed individuals. We also confirm glyphosate 
contamination via ingestion and inhalation, as lower levels 
of glyphosate were observed in individuals who mainly ate 
organic food and drank filtered water, while higher levels 
were found in tobacco users, glyphosate being used nowa-
days as a desiccant for some crops before harvest.

Our results are globally consistent with the data in inter-
national literature and show a large exposure of the French 
population to glyphosate-based herbicides. On the whole, 
this exposure seems comparable or slightly higher than that 
measured in inhabitants of other industrial countries.

It should be noted that our results do not allow to estimate 
the actual level of glyphosate daily intake in the population. 
The relevance of measuring the level of glyphosate in urine 
as a reliable estimate of exposure is a major methodological 
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issue. Until recently, data were only available from labora-
tory animal studies, with excretion rates of approximately 
20% of an orally administered dose of glyphosate (EFSA 
2015). It was recently demonstrated, however, that about 
only 1% of the glyphosate dose was excreted in human urine 
within 44 h (Faniband et al. 2021). An accurate quantifica-
tion of exposure, whether by internal or external route, is a 
major public health concern as toxicity evaluation relies on 
absorbed dose estimates (IARC 2015).

Our results concerning a higher contamination during 
spring and summer, along with a higher level found in non-
filtered water consumers also raise the question of environ-
mental contamination, supported by the widespread glypho-
sate contamination of honey (Zoller et al. 2018). Many 
studies associated pesticide use with the decline in numbers 
of insects and birds (Jactel et al. 2021). Moreover, resistance 
to glyphosate is a well-described mechanism (Sammons and 
Gaines 2014) that arises in several weed species, driven by 
rapid and different biological processes in response to abi-
otic selective pressure (Patterson et al. 2018, 2019). The fast 
and independent evolution in multiple species of resistance 
mechanisms to glyphosate makes it necessary to increase 
glyphosate applications to obtain an equivalent lethal effect. 
Accordingly, population exposure seems to have increased 
during the 2000s, as supported by a study carried out in 
Germany (Conrad et al. 2017).

In conclusion, our data further contribute to the descrip-
tion of a widespread glyphosate contamination of the popu-
lation in industrialized countries and raise the question of the 
sustainability of widespread and repeated use of glyphosate. 
Glyphosate and pesticides, in general, are described as being 
harmful to both farmers’ health and biodiversity, with long-
lasting environmental contamination. Although organic food 
production is continuously increasing in France (Agreste 
2020c), glyphosate is still authorized in French and EU agri-
culture and the CAP (Common Agricultural Policy) recently 
adopted by European Union may not be strong enough to 
implement and support a transition towards a new agricul-
tural model (Massot Marti 2020) rising to the challenge of 
food supply, farmers’ income and health and biodiversity.
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